Pt Oxygen Example
Pt Oxygen example¶
This is an example of a simple irreversible reaction where oxygen is fed over a platinum catalyst. The goal is to show the amount of conversion of the oxygen in a robust manner. The problem with the dataset is that it includes many outliers and the mass spectrometer measurements has a significant drift from pulse to pulse. This example will use TEAK to determine the appropriate conversion values. Later in the example, the traditional calibration methods will be used and compare to TEAK.
# imports
import tapsap
import plotly
import plotly.express as px
import pandas as pd
import numpy as np
plotly.offline.init_notebook_mode()
# read in the data
data = tapsap.read_tdms('../../DC_ZF_Surface_Sites/data/100_0628/06281035.tdms')
times = data.species_data['AMU_40_1'].times
Calibration via TEAK¶
The inert gas in this experiment is Argon and the reactant is Oxygen. To perform TEAK, the Argon information will first be baseline corrected using information about the residence time distribution and then calibrated to a single reference flux.
argon = data.species_data['AMU_40_1']
argon.grahams_law(32)
argon.baseline_correct(smooth_flux = True)
# note that before selecting the reference index, plot it just to make sure you are not calibrating to an outgassing sample
argon.calibrate_flux(reference_index = 10)
argon.set_moments(smooth_flux = True, find_integration_times = True)
# normalize the argon M0
# median_M0 = np.median(argon.df_moments['M0'])
# argon.calibrate_flux(1/median_M0)
# argon.set_moments()
Just looking at the Argon M0, outgassing can be observed at several pulse indices.
df = pd.DataFrame()
pulse_index = np.array(list(range(argon.df_moments.shape[0])))
df['Ar M0'] = argon.df_moments['M0']
tapsap.plot_tap(pulse_index, df, x_lab= 'Pulse Index', y_lab= 'M0', legend=True)
known_outgassing = list(np.where(np.abs(np.median(df['Ar M0']) - df['Ar M0']) > 1 * np.std(df['Ar M0']))[0])
print(known_outgassing)
[5, 9, 14, 16, 20, 31, 124, 135, 205, 233, 242, 247, 307, 365, 392, 402, 431, 479, 488]
Plots of the outgassing examples
df = pd.DataFrame()
df['Clean'] = argon.flux.iloc[:, 10]
for i in known_outgassing:
df[str(i)] = argon.flux.iloc[:, i]
tapsap.plot_tap(times, df, legend=True)
Even after removing the outliers from the data, there still could be room for improvement shown in th eplot below. However, since the M0 values are relatively close (0.53 to 0.533), no further pruning of the data will be performed.
df = pd.DataFrame()
df['Ar M0'] = argon.df_moments['M0']
df = df.drop(known_outgassing)
pulse_array = np.delete(pulse_index, known_outgassing)
tapsap.plot_tap(pulse_array, df, x_lab= 'Pulse Index', y_lab= 'M0', legend=True)
As a robust measure of the variability, the Median Absolute Deviation (MAD) is given below showing minimal variation pulse to pulse.
print(tapsap.mad(df['Ar M0']))
0.0001482766267545399
After the Argon data is calibrated, the oxygen data will be baseline corrected and then calibrated to the Argon information. A huber_loss is set to True to account for any significant outliers within the individual flux.
oxygen = data.species_data['AMU_32_1']
oxygen.baseline_correct()
oxygen.reference_gas = argon
oxygen.calibrate_flux(huber_loss = True)
oxygen.set_moments(smooth_flux = True, find_integration_times = True)
The calibrated oxygen shows potential outgassing as distinct spikes in the M0 over the pulse index.
df = pd.DataFrame()
df['O2 M0'] = oxygen.df_moments['M0']
df['Ar M0'] = argon.df_moments['M0']
df = df.drop(known_outgassing)
tapsap.plot_tap(pulse_array, df, x_lab= 'Pulse Index', y_lab= 'M0', legend=True)
Below is subset of the M0 spikes plotted as flux over time. Outliers in the lower in the pulse index can be attributed to low signal to noise ratios while the larger pulse indices clearly exhibit outgassing.
df_dirty = pd.DataFrame()
df_dirty[str(134)] = oxygen.flux.iloc[:, 134]
df_dirty[str(195)] = oxygen.flux.iloc[:, 195]
df_dirty[str(274)] = oxygen.flux.iloc[:, 274]
df_dirty[str(447)] = oxygen.flux.iloc[:, 447]
tapsap.plot_tap(times, df_dirty, legend=True)
These outliers can easily be deteced by looking at where the difference of the M0 is significantly larger than the standard deviation of the differenced M0. Below is a plot of the M0 values where the outliers are removed.
oxygen_moments = oxygen.df_moments['M0']
new_outliers = list(np.where(np.diff(oxygen_moments) > 0.5 * np.std(np.diff(oxygen_moments)))[0])
print(new_outliers)
df = pd.DataFrame()
df['O2'] = oxygen.df_moments['M0']
df['Ar'] = argon.df_moments['M0']
new_known_outgassing = list(np.unique(np.array(known_outgassing + new_outliers)))
pulse_array_2 = np.delete(pulse_index, new_known_outgassing)
df = df.drop(new_known_outgassing)
tapsap.plot_tap(pulse_array_2, df, x_lab= 'Pulse Index', y_lab= 'M0', legend=True)
[56, 79, 119, 134, 135, 139, 192, 195, 197, 199, 228, 247, 258, 274, 307, 368, 392, 439, 447, 459, 471]
With the TEAK preprocessing, the flux comparison below shows that by the end of the experiment, only transport is occuring with the oxygen.
test = pd.DataFrame()
test['Ar'] = argon.flux.iloc[:, 499]
test['O2'] = oxygen.flux.iloc[:, 499]
tapsap.plot_tap(times, test, legend=True)
Calibration via Traditional baseline correction and calibration¶
The same data as above will be calibrated via the traditional methodology of baseline correction (using a time range) and calibration (using information about an inert experiment). Note that the traditional method is much faster than TEAK in computation time.
# read in the data
traditional_data = tapsap.read_tdms('../../DC_ZF_Surface_Sites/data/100_0628/06281035.tdms')
traditional_argon = traditional_data.species_data['AMU_40_1']
traditional_argon.grahams_law(32)
traditional_oxygen = traditional_data.species_data['AMU_32_1']
Baseline correcting both Argon and Oxygen from 3.8 to 4 seconds.
traditional_argon.baseline_correct(baseline_time_range = [3.8, 4])
traditional_oxygen.baseline_correct(baseline_time_range= [3.8, 4])
Applying the inert experiment calibration value (1 / 0.761) to the calibration of the Oxygen. Just as a reminder, an inert experiment calibration value is determined as the ratio of the means of Argon and Oxygen over a series of pulses without a catalyst present.
traditional_oxygen.calibrate_flux(calibration_amount= 1 / 0.761)
Plotting the Argon and the Oxygen moments while removing the same outgassing pulses determine by TEAK.
traditional_argon.integration_times = [0,3]
traditional_oxygen.integration_times = [0,3]
traditional_argon.set_moments()
traditional_oxygen.set_moments()
df = pd.DataFrame()
df['O2'] = traditional_oxygen.df_moments['M0']
df['Ar'] = traditional_argon.df_moments['M0']
df = df.drop(new_known_outgassing)
tapsap.plot_tap(pulse_array_2, df, x_lab= 'Pulse Index', y_lab= 'M0', legend=True)
Below is a plot of the last pulse within the traditional calibration. Note that even though the flux match, the traditional calibration underestimates the conversion.
test = pd.DataFrame()
test['Ar'] = traditional_argon.flux.iloc[:, 499]
test['O2'] = traditional_oxygen.flux.iloc[:, 499]
tapsap.plot_tap(times, test, legend=True)
Comparison of the conversion values¶
df = pd.DataFrame()
df['Traditional'] = 1 - traditional_oxygen.df_moments['M0'] / traditional_argon.df_moments['M0']
df['TEAK'] = 1 - oxygen.df_moments['M0'] / argon.df_moments['M0']
df = df.drop(new_known_outgassing)
tapsap.plot_tap(pulse_array_2, df, x_lab= 'Pulse Index', y_lab= 'Conversion', legend=True)
Plotting the mean residence time comparison.
df = pd.DataFrame()
df['Traditional Mean'] = traditional_oxygen.df_moments['M1'] / traditional_oxygen.df_moments['M0']
df['TEAK Mean'] = oxygen.df_moments['M1'] / oxygen.df_moments['M0']
# subseting the data for better clarity
remove_pulse = list(np.unique(list(np.arange(250,df.shape[0])) + new_known_outgassing))
df = df.drop(remove_pulse)
pulse_subset = np.delete(pulse_index, remove_pulse)
tapsap.plot_tap(pulse_subset, df, x_lab= 'Pulse Index', y_lab= 'mean rt', legend=True)
Plotting the variance residence time (the variance should never be negative). Any negative value of the variance will lead to miscalculation of the residence time coefficients as the formula uses the M0, M1 and M2.
df = pd.DataFrame()
df['Traditional Var'] = traditional_oxygen.df_moments['M2'] / traditional_oxygen.df_moments['M0'] - (traditional_oxygen.df_moments['M1'] / traditional_oxygen.df_moments['M0'])**2
df['TEAK Var'] = oxygen.df_moments['M2'] / oxygen.df_moments['M0'] - (oxygen.df_moments['M1'] / oxygen.df_moments['M0'])**2
# subseting the data for better clarity
remove_pulse = list(np.unique(list(np.arange(250,df.shape[0])) + new_known_outgassing))
df = df.drop(remove_pulse)
pulse_subset = np.delete(pulse_index, remove_pulse)
tapsap.plot_tap(pulse_subset, df, x_lab= 'Pulse Index', y_lab= 'var rt', legend=True)
print(np.where(df['TEAK Var'] < 0)[0])
[]
Futher focusing on where the conversion is less than 90%.
df = pd.DataFrame()
df['Traditional Mean'] = traditional_oxygen.df_moments['M1'] / traditional_oxygen.df_moments['M0']
df['TEAK Mean'] = oxygen.df_moments['M1'] / oxygen.df_moments['M0']
# subseting the data for better clarity
remove_pulse = list(np.unique(list(np.arange(0,30)) + list(np.arange(250,df.shape[0])) + new_known_outgassing))
df = df.drop(remove_pulse)
pulse_subset = np.delete(pulse_index, remove_pulse)
tapsap.plot_tap(pulse_subset, df, x_lab= 'Pulse Index', y_lab= 'mean rt', legend=True)
df = pd.DataFrame()
df['Traditional Var'] = traditional_oxygen.df_moments['M2'] / traditional_oxygen.df_moments['M0'] - (traditional_oxygen.df_moments['M1'] / traditional_oxygen.df_moments['M0'])**2
df['TEAK Var'] = oxygen.df_moments['M2'] / oxygen.df_moments['M0'] - (oxygen.df_moments['M1'] / oxygen.df_moments['M0'])**2
# subseting the data for better clarity
remove_pulse = list(np.unique(list(np.arange(0,30)) + list(np.arange(250,df.shape[0])) + new_known_outgassing))
df = df.drop(remove_pulse)
pulse_subset = np.delete(pulse_index, remove_pulse)
tapsap.plot_tap(pulse_subset, df, x_lab= 'Pulse Index', y_lab= 'var rt', legend=True)