tapsap.transient_analysis package

Submodules

tapsap.transient_analysis.concentration_g module

tapsap.transient_analysis.concentration_g.concentration_g(flux: ndarray, times: ndarray, zone_lengths: dict) ndarray

Calculation of the concentration via the G-Procedure.

Args:

flux (float ndarray): The outlet flux.

times (float ndarray): An array of time.

zone_lengths (dict): The reactor zone lengths.

Returns:

concentration (float ndarray): The gas concentration (1/second) of the given flux.

Citation:

Yablonsky et al, “The Y-procedure: How to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model”

Redekop et al, “The Y-Procedure methodology for the interpretation of transient kinetic data: Analysis of irreversible adsorption”

Kunz et al, “Pulse response analysis using the Y-procedure: A data science approach”

Kunz et al, “Probability theory for inverse diffusion: Extracting the transport/kinetic time-dependence from transient experiments”

Implementor:
  1. Ross Kunz

See also:

tapsap.utils.trapz

Link:

https://doi.org/10.1016/j.ces.2007.04.050

https://doi.org/10.1016/j.ces.2011.08.055

https://doi.org/10.1016/j.ces.2018.06.078

https://doi.org/10.1016/j.cej.2020.125985

tapsap.transient_analysis.concentration_units module

tapsap.transient_analysis.concentration_units.concentration_units(gas_diffusion: float, zone_lengths: dict, reactor_radius: float, mol_per_pulse: float = 1) float

Calculation of the concentration units: (mol per pulse * catalyst zone length) / (gas diffusion * cross sectional area). This results in the concentration returned as mol/m3. Note: the units in meters is dependent on the user input of the diffusion coefficient and zone length units. For example, if the length units are given as cm, then the resulting concentration will be given as mol / cm3.

Args:

gas_diffusion (float): The diffusion coefficient of the gas.

zone_lengths (dict): The reactor zone lengths.

reactor_radius(float): The radius of the reactor.

mol_per_pulse (float): The mol per injection.

Returns:

units (float): The gas concentration units (mol/m3).

Citation:

Yablonsky et al, “The Y-procedure: How to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model”

Redekop et al, “The Y-Procedure methodology for the interpretation of transient kinetic data: Analysis of irreversible adsorption”

Kunz et al, “Pulse response analysis using the Y-procedure: A data science approach”

Kunz et al, “Probability theory for inverse diffusion: Extracting the transport/kinetic time-dependence from transient experiments”

Implementor:
  1. Ross Kunz

Link:

https://doi.org/10.1016/j.ces.2007.04.050

https://doi.org/10.1016/j.ces.2011.08.055

https://doi.org/10.1016/j.ces.2018.06.078

https://doi.org/10.1016/j.cej.2020.125985

tapsap.transient_analysis.concentration_y module

tapsap.transient_analysis.concentration_y.concentration_y(flux: ndarray, times: ndarray, diffusion: float, zone_lengths: dict, zone_porosity: dict, smoothing_amt: float = 3) ndarray

Calculation of the concentration via the Y-Procedure. Note that they Y-Procedure is extremely sensitive on the smoothing amount provided.

Args:

flux (float ndarray): The outlet flux.

times (float ndarray): An array of time.

diffusion (float): The diffusion coefficient within the catalyst zone.

zone_lengths (dict): The reactor zone lengths.

zone_porosity (dict): The assumed bed porosity within the catalyst.

smoothing_amt (float, optional): The amount of smoothing to be applied to the Y-Procedure.

Returns:

concentration (float ndarray): The gas concentration (1/second) of the given flux.

Citation:

Yablonsky et al, “The Y-procedure: How to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model”

Redekop et al, “The Y-Procedure methodology for the interpretation of transient kinetic data: Analysis of irreversible adsorption”

Kunz et al, “Pulse response analysis using the Y-procedure: A data science approach”

Kunz et al, “Probability theory for inverse diffusion: Extracting the transport/kinetic time-dependence from transient experiments”

Implementor:
  1. Ross Kunz

Link:

https://doi.org/10.1016/j.ces.2007.04.050

https://doi.org/10.1016/j.ces.2011.08.055

https://doi.org/10.1016/j.ces.2018.06.078

https://doi.org/10.1016/j.cej.2020.125985

tapsap.transient_analysis.postprocess_g module

tapsap.transient_analysis.postprocess_g.postprocess_g(flux: ndarray, flux_argmax: Optional[int] = None) ndarray

Correction of negative values within the concentration and rate via the G-Procedure due to noise early within the flux.

Args:

flux (float ndarray): The outlet flux. More specifically, the concentration or rate.

flux_argmax (float, optional): The index of the maximum of the flux (typically the flux not the concentration or rate).

Returns:

flux (float ndarray): The flux without the negative values before the maximum of the flux response.

Citation:

None

Implementor:
  1. Ross Kunz

See also:

None

Link:

None

tapsap.transient_analysis.rate_g module

tapsap.transient_analysis.rate_g.rate_g(flux: ndarray, times: ndarray, zone_lengths: dict, inert_flux: Optional[ndarray] = None) ndarray

Calculation of the rate via the G-Procedure. If the flux is derived from the reactant gas, then flux must be the difference of the inert_flux and reactant_flux or inert_flux must be populated with the flux of the inert.

Args:

flux (float ndarray): The outlet flux.

times (float ndarray): An array of time.

zone_lengths (dict): The reactor zone lengths.

inert_flux (float ndarray, optional): The outlet flux of the inert.

Returns:

rate (float ndarray): The gas rate (temporal) of the given flux.

Citation:

Yablonsky et al, “The Y-procedure: How to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model”

Redekop et al, “The Y-Procedure methodology for the interpretation of transient kinetic data: Analysis of irreversible adsorption”

Kunz et al, “Pulse response analysis using the Y-procedure: A data science approach”

Kunz et al, “Probability theory for inverse diffusion: Extracting the transport/kinetic time-dependence from transient experiments”

Implementor:
  1. Ross Kunz

See also:

tapsap.utils.trapz

Link:

https://doi.org/10.1016/j.ces.2007.04.050

https://doi.org/10.1016/j.ces.2011.08.055

https://doi.org/10.1016/j.ces.2018.06.078

https://doi.org/10.1016/j.cej.2020.125985

tapsap.transient_analysis.rate_units module

tapsap.transient_analysis.rate_units.rate_units(mol_per_pulse: float = 1, catalyst_weight: float = 1) float

Calculation of the rate units: mol / catalyst weight. This results in the concentration returned as mol/m2/s. Note: the units in meters is dependent on the user input catalyst weight units.

Args:

mol_per_pulse (float): The mol per injection.

catalyst_weight (float): The weight of the catalyst

Returns:

units (float): The units units (mol/m2/s).

Citation:

Yablonsky et al, “The Y-procedure: How to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model”

Redekop et al, “The Y-Procedure methodology for the interpretation of transient kinetic data: Analysis of irreversible adsorption”

Kunz et al, “Pulse response analysis using the Y-procedure: A data science approach”

Kunz et al, “Probability theory for inverse diffusion: Extracting the transport/kinetic time-dependence from transient experiments”

Implementor:
  1. Ross Kunz

Link:

https://doi.org/10.1016/j.ces.2007.04.050

https://doi.org/10.1016/j.ces.2011.08.055

https://doi.org/10.1016/j.ces.2018.06.078

https://doi.org/10.1016/j.cej.2020.125985

tapsap.transient_analysis.rate_y module

tapsap.transient_analysis.rate_y.rate_y(flux: ndarray, times: ndarray, diffusion: float, zone_lengths: dict, zone_porosity: dict, inert_flux: Optional[ndarray] = None, smoothing_amt: float = 3) ndarray

Calculation of the rate via the Y-Procedure. Note that they Y-Procedure is extremely sensitive on the smoothing amount provided.

Args:

flux (float ndarray): The outlet flux.

times (float ndarray): An array of time.

diffusion (float): The diffusion coefficient within the catalyst zone.

zone_lengths (dict): The reactor zone lengths.

inert_flux (float ndarray, optional): The outlet flux of the inert.

smoothing_amt (float, optional): The amount of smoothing to be applied to the Y-Procedure.

zone_porosity (dict): The assumed bed porosity within the catalyst.

Returns:

rate (float ndarray): The gas rate (temporal) of the given flux.

Citation:

Yablonsky et al, “The Y-procedure: How to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model”

Redekop et al, “The Y-Procedure methodology for the interpretation of transient kinetic data: Analysis of irreversible adsorption”

Kunz et al, “Pulse response analysis using the Y-procedure: A data science approach”

Kunz et al, “Probability theory for inverse diffusion: Extracting the transport/kinetic time-dependence from transient experiments”

Implementor:
  1. Ross Kunz

Link:

https://doi.org/10.1016/j.ces.2007.04.050

https://doi.org/10.1016/j.ces.2011.08.055

https://doi.org/10.1016/j.ces.2018.06.078

https://doi.org/10.1016/j.cej.2020.125985

tapsap.transient_analysis.uptake module

tapsap.transient_analysis.uptake.uptake(rate: ndarray, times: ndarray) ndarray

Calculation of the uptake as the cumulative integral of the rate. The rate can be given from previous calculations or by the Y or G Procedure

Args:

rate (float ndarray): The gas rate (temporal) of the given flux.

times (float ndarray): An array of time.

Returns:

uptake (float ndarray): The uptake (temporal) of the given rate.

Citation:

Yablonsky et al, “The Y-procedure: How to extract the chemical transformation rate from reaction–diffusion data with no assumption on the kinetic model”

Redekop et al, “The Y-Procedure methodology for the interpretation of transient kinetic data: Analysis of irreversible adsorption”

Kunz et al, “Pulse response analysis using the Y-procedure: A data science approach”

Implementor:
  1. Ross Kunz

Link:

https://doi.org/10.1016/j.ces.2007.04.050

https://doi.org/10.1016/j.ces.2011.08.055

https://doi.org/10.1016/j.ces.2018.06.078

Module contents